Optimal, ‘Off-the-shelf’, CAR-iNKT Cell Platform-based Immunotherapy for Multiple Myeloma

Kanagaraju Ponnusamy ${ }^{1}$, Lyra Randzavola², Hongwei Ren ${ }^{2}$, Klesti Karaxhuku¹, Bryan Lye ${ }^{2}$, Dimitrios Leonardos ${ }^{13,3}$, Reza Nadafi4, Irene Sarkar4, Ilia Leontari¹, Farah Sabrin ${ }^{2}$, Mehmood Zaidi ${ }^{2}$, Marco Bua ${ }^{5}$, Maria Atta ${ }^{1}$, Alexia Katsarou ${ }^{1}$, Irene Roberts ${ }^{6,7}$, Aristeidis Chaidos ${ }^{1,5}$ and Anastasios Karadimitris ${ }^{1,5}$
${ }^{1}$ Hugh \& Josseline Langmuir Centre for Myeloma Research Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom. ${ }^{2}$ Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom. ${ }^{3}$ University of loannina Medical School, Ioannina, Greece. ${ }^{4}$ Lumicks, Amsterdam, Netherlands. ${ }^{5}$ Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom. ${ }^{6}$ Department of Paediatrics, University of Oxford, Oxford, United Kingdom. ${ }^{7}$ Molecular Haematology Unit, MRC Weatherall Institute of \#3459 Molecular Medicine, University of Oxford, Oxford, United Kingdom.

Imperial College London

BACKGROUND

Multiple myeloma (MM) is an incurable cancer of plasma cells $5^{11^{2}}$. Autologous anti-BCMA chimeric antigen receptor

The co-stimulatory molecule domain of a CAR structure is critical for its anti-cancer activity. Interestingly, both licensed anti-BCMA CAR-T products contain $4-1 \mathrm{BB}$ as the co-stimulatory domain of a
$2^{n d}$ generation CAR. iNKT cells offer an alternative platform to conventional T cells fo CAR-based immunotherapy ${ }^{3,4}$
iNKT cells are CD1d-restricted, glycolipid-reactive T cell: characterised by an invariant TCRVa24--a18 chain nearly alwa pairing with a diverse TCRV $\beta 11$ chain ${ }^{6}$. Since iNKT cells do not cause acute graft-versus-host-disease (aGVHD) they can be used -the-sheff immunotherapy platform
Here we compare and contrast co-stimulatory molecules in five different second (CD28z, 418Bz, OX40z) and third (CD28z-41BBz
and CD28z-OX40z) generation CARs in the context of anti-BCMA CAR-iNKT immunotherapy for MM.

METHODS

iNKT cells were purified from healthy donor PBMCs followed by anti-CD3-CD28-mediated activation and transduction to express BCMA CAR. CAR levels were detected using either $L-$ protein or SBCMA. Cells were expanded in the presence of LL is media and stimulated with C1R-CD1d cells pulsed with alpha-Galcer. Proifieration was assessed
imaging and trypan blue-based cell counting.

In vitro cytotoxicity was performed by co-incubating iNKT cells and target cells with indicated effector : target ratios
Avidity was measured by seeding iNKT cells on MM1.S cell monolayer followed by low-bound cells removal by acoustic

Whole transcriptome of iNKT cells was performed and analysed using standard approaches
For in vivo assays, $7 E 6$ Luc-dsRed-expressing MM1.S cells were injected intravenously (i.v) into $6-8$ weeks old NSG mice followed by treatment with $1 E 6$ BCMA CAR
7 , post-tumor cells injection. Tumor engrattment and burden levels were assessed by serial bioluminescence (BLI).

RESULTS

 Cell proliferation afte
Galce stimulation

Fig 2. BCMA CAR leukemia cells

REFERENCES

 .Blood. 2021;13
Rootolo A, Caputo VS, Holubova Met al., Enhanceed Anti-1Ymohoma Activity of CAR19-iNKT Cells Underpinned by Dual cD19 and CD1d Targeting. cancer Cell. 2018 O ;;3441):596-610.e11. ont. Immunol. 14:1112sel , Ren H, Taylor GP, Cook LBM and ka
Salio M , Silk ID, 11 ,
Mavers M, Mase ${ }^{2}$.
Mavers M, Mass-Bauer K, Negrin RS. Invariant Natural Kilier T Cells AS Suppressors of Graftiversus Host Disease in Allogeneicic Hematopoieitic Stem Cell Transplantation. Front

ACKNOWLEDGEMENTS

тhe $\mathscr{K}_{\text {ay }} \mathscr{K}_{\text {endall }}$ leukaemia fund

NPR Imperial Biomedica Research Centre

SUMMARY

Highly pure ($>99 \%$) iNKT cells were isolated

 from PBMCs$>90 \%$ transduction were achieved for all BCMA CARs

BCMA CARs with different co-stimulatory molecules vary in their in vitro cytotoxic activity against $M M$ and show donordependency

CD28z BCMA CAR induces the highest CAR iNKT cell proliferation and expansion in vitro

BCMA-CD28z CAR is associated with highest avidity of CAR-iNKT cells

Highest levels of in vivo expansion was observed for CD28z and CD28z-OX4Oz CARiNKT cells

In line with avidity assays, BCMA-CD28z CARiNKT cells exert the highest anti-myeloma activity in vivo

Comparative transcriptome analysis reveals only a small number of genes differentially expressed between different CARs

Differentially expressed genes involved in cell currently under investigation

CONCLUSIONS

Proliferation and cell avidity but not cytotoxicity predict in vivo anti-myeloma activity of CAR-iNKT cells

Unlike CAR-T cells, future clinical development of CAR-NKT cells for MM would include CD28 as the preferred co-stimulatory domain

CONTACT INFORMATION

k.ponnusamy@imperial.ac.uk a.karadimitris@imperial.ac.uk

